Инженерный калькулятор онлайн с самыми точными расчетами!
Содержание:
- Мир математики
- Извлечение корня натуральной степени из комплексного числа
- Формы представления комплексных чисел
- Как появился калькулятор? Историческая сводка
- Комплекс операций инженерного калькулятора
- Основные действия с комплексными числами
- Сложение и вычитание комплексных чисел
- Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- Деление комплексных чисел
- Деление комплексных чисел
- Аргумент комплексного числа
- Инженерный калькулятор онлайн
- Понятие комплексного числа
- Сопряженные числа и их свойства
- Формула Эйлера. Экспоненциальная форма записи комплексного числа
Мир математики
Достойный внимания сайт, предоставляющий после полученного ответа подробные пояснения. Работать с ним также очень легко:
вводите условия в соответствующие поля;
- выбираете нужное действие;
- после нажатия на выбранную операцию будет начато вычисление и выдан результат.
Здесь вы найдете при необходимости подробную инструкцию для работы, так что точно не запутаетесь. Доступны разные варианты вычислительных сервисов, к примеру, матричный, инженерный и прочие.
Полезный контент:
- Формат heic, чем открыть, что это такое?
- Перевод с английского на русский с транскрипцией — лучшие онлайн сервисы
- Видеодрайвер перестал отвечать и был восстановлен — что за ошибка?
- Запись видео с экрана компьютера — какие программы в этом помогут?
- Караоке онлайн петь бесплатно с баллами — какие сервисы в этом помогут
Извлечение корня натуральной степени из комплексного числа
Пусть — произвольное комплексное число, отличное от нуля.
Корнем n — ой степени из числа z , где называют такое комплексное число z = r e iφ , которое является решением уравнения
z n = z . | (8) |
Для того, чтобы решить уравнение (8), перепишем его в виде
и заметим, что два комплексных числа, записанных в экспоненциальной форме, равны тогда и только тогда, когда их модули равны, а разность аргументов равна 2kπ , где k — произвольное целое число. По этой причине справедливы равенства
следствием которых являются равенства
(9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
(10) |
где
причем на комплексной плоскости концы радиус-векторов zk при k = 0 , … , n – 1 располагаются в вершинах правильного n — угольника, вписанного в окружность радиуса с центром в начале координат.
Замечание. В случае n = 2 уравнение (8) имеет два различных корня z1 и z2 , отличающихся знаком:
z2 = – z1 .
Пример 1. Найти все корни уравнения
z3 = – 8i .
Решение. Поскольку
то по формуле (10) получаем:
Следовательно,
Пример 2. Решить уравнение
z2 + 2z + 2 = 0 .
Решение. Поскольку отрицателен, то вещественных корней оно не имеет. Для того, чтобы найти комплексные корни, выделим, как и в вещественном случае, полный квадрат:
Так как
то решения уравнения имеют вид
z1 = – 1 + i , z2 = – 1 – i .
Формы представления комплексных чисел
Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.
- Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: , где x — действительная часть, а y — мнимая часть
- Тригонометричкая форма — запись вида , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
- Показательная форма — запись вида , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))
Пример:
Переведите число 1+i в тригонометрическую и показательную формы:
Решение:
- Найдём радиус (модуль) комплексного числа r: r = √(12 + 12) = √2
- Найдём аргумент числа: φ = arctan(
1
1
) =
π
4
= 45° - Запишем результат в тригонометрической форме:
- Запишем результат в показательной форме:
Как появился калькулятор? Историческая сводка
Практически все уже знают, что первое устройство для счета появилось давным-давно, это была счетная доска, под названием «абак». Потом использовались счеты, мат.таблицы. «Дальний родственник» калькулятора – арифмометр был изобретен уже в 1643 г. ученым из Франции Блезом Паскалем.
Математический калькулятор в привычном нам карманном варианте, форме появился в 1971 году. Производителем прототипа является фирма Bomwar. В 70-х в производство были запущены версии устройств с более адаптированным функционалом, в т.ч. инженерный калькулятор со степенями (Hewlett Packard в 72 году).
Мало кто знает, что в настоящее время калькуляторы имеют десятки вариантов и моделей. Исходя из цели использования и объема вводимой информации, большим спросом пользуются устройства следующих разновидностей:
- Простой онлайн калькулятор
- Статистический – вычисление статистических данных социальных опросов
- Медицинский
- Для программирования
- Графический – строит графики функций и не только
- Финансовые, в том числе ипотечная модель — необходима для расчета процентов на погашение кредита
- Покерное устройство — для просчета риска и возможности выигрыша ставок
- Бухгалтерский и налоговый
Комплекс операций инженерного калькулятора
Встроенный математический калькулятор поможет вам провести самые простые расчеты: умножение и суммирование, вычитание, а также деление. Калькулятор степеней онлайн быстро и точно возведет любое число в выбранную вами степень.
Представленный инженерный калькулятор содержит в себе все возможные вариации онлайн программ для расчетов. Kalkpro.ru содержит тригонометрический калькулятор (углы и радианы, грады), логарифмов (Log), факториалов (n!), расчета корней, синусов и арктангенсов, косинусов, тангенсов онлайн – множество тригонометрический функций и не только.
Работать с вычислительной программой можно онлайн с любого устройства, в каждом случае размер интерфейса будет подстраиваться под ваше устройство, либо вы можете откорректировать его размер на свой вкус.
Ввод цифр производится в двух вариантах:
- с мобильных устройств – ввод с дисплеем телефона или планшета, клавишами интерфейса программы
- с персонального компьютера – с помощью электронного дисплея интерфейса, либо через клавиатуру компьютера любыми цифрами
Основные действия с комплексными числами
Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:
- сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
- вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
- умножение: (a + bi) · (c + di) = ac + bci + adi + bdi2 = (ac — bd) + (bc + ad)i
-
деление:
a + bi
c + di
=
(a + bi)(c — di)
c2 + d2
=
(ac + bd)
c2 + d2
+
(bc — ad)
c2 + d2
i
Примеры
Найти сумму чисел и :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: + =
Найти разность чисел и :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: — =
Найти произведение чисел и :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: * =
Найти отношение чисел и :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: / =
Сложение и вычитание комплексных чисел
Сложение и вычитание комплексных чисел — это безусловно, самая простая и понятная операция. Сложение/вычитание действительных частей комплексного числа переводит точку вправо/влево на действительной оси, а сложение/вычитание мнимых частей комплексного числа переводит точку вверх/вниз на мнимой оси.
Арифметически это работает так же, как объединение одинаковых членов в алгебре.
Например, если мы вычтем 1 — 4i из 3 + 2i, мы просто находим разницу действительных 3 — 1 = 2 и мнимых 2i — (-4i ) = 2i + 4i = 6i частей.
Это то же самое, что построить точку 3 + 2i и перенести ее влево на 1 единицу и вверх на 4 единицы. Получившаяся точка — это итоговый результат: 2 + 6i.
Также можно представить точки комплексной плоскости как вектор (Вектор – отрезок соединяющий две точки для которого указано, какая из его граничных точек является началом, а какая концом). В нашем случаем началом будет начало координат (0,0), а концом сама точка. Теперь внесём знак минус под скобки, чтобы у нас было сложение:
(3 + 2i) + (-1 + 4i)
И затем построим два вектора.
Чтобы узнать результат сложения перенесём параллельно начало одного вектора в конец второго. Поскольку сложение является коммутативным, не имеет значения, каким образом мы их складываем. a+b=b+а (свойство коммутативности)
Это может показаться излишним, но вот в чем дело: понимание векторного представления сделает умножение и деление комплексных чисел намного проще.
Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
С алгебраической формой комплексного числа мы уже познакомились, – это и есть алгебраическая форма комплексного числа. Почему речь зашла о форме? Дело в том, что существуют еще тригонометрическая и показательная форма комплексных чисел, о которых пойдет речь в следующем параграфе.
Действия с комплексными числами не представляют особых сложностей и мало чем отличаются от обычной алгебры.
Сложение комплексных чисел
Пример 1
Сложить два комплексных числа ,
Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:
Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях.
Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.
Для комплексных чисел справедливо правило первого класса: – от перестановки слагаемых сумма не меняется.
Вычитание комплексных чисел
Пример 2
Найти разности комплексных чисел и , если ,
Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака:
Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная: . Для наглядности ответ можно переписать так: .
Рассчитаем вторую разность:
Здесь действительная часть тоже составная:
Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью: . Вот здесь без скобок уже не обойтись.
Умножение комплексных чисел
Настал момент познакомить вас со знаменитым равенством:
Пример 3
Найти произведение комплексных чисел ,
Очевидно, что произведение следует записать так:
Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что и быть внимательным.
Повторим, omg, школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.
Я распишу подробно:
Надеюсь, всем было понятно, что
Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках. Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство:
Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство: .
В учебной литературе и на просторах Сети легко найти специальную формулу для вычисления произведения комплексных чисел. Если хотите, пользуйтесь, но мне кажется, что подход с умножением многочленов универсальнее и понятнее. Формулу приводить не буду, считаю, что в данном случае – это забивание головы опилками.
Деление комплексных чисел
Пример 4
Даны комплексные числа , . Найти частное .
Составим частное:
Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение.
Вспоминаем бородатую формулу и смотрим на наш знаменатель: . В знаменателе уже есть , поэтому сопряженным выражением в данном случае является , то есть
Согласно правилу, знаменатель нужно умножить на , и, чтобы ничего не изменилось, домножить числитель на то же самое число :
Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться формулой (помним, что и не путаемся в знаках!!!).
Распишу подробно:
Пример я подобрал «хороший», если взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде .
В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы: . Для любителей порешать приведу правильный ответ:
Редко, но встречается такое задание:
Пример 5
Дано комплексное число . Записать данное число в алгебраической форме (т.е. в форме ).
Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю выражение. Снова смотрим на формулу . В знаменателе уже есть , поэтому знаменатель и числитель нужно домножить на сопряженное выражение , то есть на :
Пример 6
Даны два комплексных числа , . Найти их сумму, разность, произведение и частное.
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
На практике запросто могут предложить навороченный пример, где нужно выполнить много действий с комплексными числами. Никакой паники: будьте внимательны, соблюдайте правила алгебры, обычный алгебраический порядок действий, и помните, что
Деление комплексных чисел
Как и при любом делении в алгебре, комплексное число нельзя делить на нуль
и на комплексное число .
При делении комплексного числа на действительное число на это число нужно
разделить и действительную, и мнимую компоненты. При делении комплексного числа на
комплексное число нужно делимое и делитель умножить на число, сопряжённое делителю.
Пример 9. Разделить комплексное число
на комплексное число
.
Решение. Умножив числитель и знаменатель дроби
на , получаем:
Автор проекта был свидетелем вопроса о том, откуда взялось 5 в знаменателе дроби.
Пояснения вызывают реакцию «А слона-то я и не заметил!». Пояснения следующие: не забываем, что мы
имеем дело с комплексными числами и знаем, что — это
не какая-нибудь переменная, а корень из минус единицы. Таким образом,
.
Пример 10. Разделить комплексное число
на комплексное число
.
Решение. Умножив числитель и знаменатель дроби
на , получаем:
Если всё же возникает вопрос, откуда в знаменателе дроби 10, смотрите пояснения в
конце предыдущего примера.
Деление комплексных чисел
Давайте разделим (3+2i)/(1–4i)
В этот момент вы можете подумать, что можете просто разделить действительные и мнимые части… но не так быстро.
Как и в алгебре, мы должны разделить оба члена числителя на знаменатель, что оставляет нас с той же проблемой:
Что на
самом деле означает деление на комплексное число?
По правде говоря, это сбивает с толку. Разве не было бы хорошо, если бы мы могли избавиться от комплексного числа в знаменателе?
Хорошие
новости → Именно это мы и собираемся сделать!
Сопряжённые числа
Ключом к решению этой
проблемы является выяснение того, как преобразовать знаменатель в вещественное
число.
Самый простой способ
сделать это — использовать комплексное
сопряжение.
Комплексно-сопряжённое число какому-то числу это тоже самое число только с другим знаком возле мнимой части. И когда мы будем умножать комплексно-сопряжённые числа мы всегда будем получать действительное число.
Например, комплексно
сопряжённое число (1–4i) равно (1+4i).
Конечно, мы не можем просто умножить знаменатель на (1+4i). Как и с любой дробью, если мы умножаем знаменатель на значение, мы также должны умножить числитель на это значение
Теперь у нас есть произведение двух комплексных чисел в числителе дроби. С ними мы знаем как обращаться из предыдущего урока. А в знаменатели дроби получили 17, что означает уменьшение вектора в 17 раз.
Вы можете решить это с помощью графика или алгебраически:
Это было не так уж и сложно, не так ли?
Аргумент комплексного числа
Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа z.
Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором z.
Аргумент комплексного числа z считают положительным, если поворот от положительного направления вещественной оси к радиус-вектору z происходит против часовой стрелки, и отрицательным — в случае поворота по часовой стрелке (см. рис.).
Считается, что комплексное число нуль аргумента не имеет.
Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где k — произвольное целое число, то вводится, главное значение аргумента, обозначаемое arg z и удовлетворяющее неравенствам:
Тогда оказывается справедливым равенство:
Если для комплексного числа z = x + i y нам известны его модуль r = | z | и его аргумент φ, то мы можем найти вещественную и мнимую части по формулам
(3) |
Если же комплексное число z = x + i y задано в алгебраической форме, т.е. нам известны числа x и y, то модуль этого числа, конечно же, определяется по формуле
(4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
Расположениечисла z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
Положительная вещественнаяполуось |
x > 0 , y = 0 |
φ = 2kπ | ||
x > 0 , y > 0 |
||||
Положительнаямнимаяполуось |
x = 0 , y > 0 |
|||
x < 0 , y > 0 |
||||
Отрицательнаявещественнаяполуось |
x < 0 , y = 0 |
π | φ = π + 2kπ | |
x < 0 , y < 0 |
||||
Отрицательнаямнимаяполуось |
x = 0 , y < 0 |
|||
x > 0 , y < 0 |
Расположениечисла z | Положительнаявещественнаяполуось |
Знаки x и y |
x > 0 , y = 0 |
Главноезначениеаргумента | |
Аргумент | φ = 2kπ |
Примеры |
Расположениечисла z | |
Знаки x и y |
x > 0 , y > 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | Положительнаямнимаяполуось |
Знаки x и y |
x = 0 , y > 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | |
Знаки x и y |
x < 0 , y > 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | Отрицательнаявещественнаяполуось |
Знаки x и y |
x < 0 , y = 0 |
Главноезначениеаргумента | π |
Аргумент | φ = π + 2kπ |
Примеры |
Расположениечисла z | |
Знаки x и y |
x < 0 , y < 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | Отрицательнаямнимаяполуось |
Знаки x и y |
x = 0 , y < 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | |
Знаки x и y |
x < 0 , y < 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположение числа z : Положительная вещественная полуось Знаки x и y : x > 0 , y = 0 Главное значение аргумента: Аргумент: φ = 2kπ Примеры: |
Расположение числа z : Знаки x и y : x > 0 , y > 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Положительная мнимая полуось Знаки x и y : x = 0 , y > 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Знаки x и y : x < 0 , y > 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Отрицательная вещественная полуось Знаки x и y : x < 0 , y = 0 Главное значение аргумента: π Аргумент: φ = π + 2kπ Примеры: |
Расположение числа z : Знаки x и y : x < 0 , y < 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Отрицательная мнимая полуось Знаки x и y : x = 0 , y < 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Знаки x и y : x < 0 , y < 0 Главное значение аргумента: Аргумент: Примеры: |
Инженерный калькулятор онлайн
Спешим представить всем желающим бесплатный инженерный калькулятор. С его помощью любой учащийся может быстро и, что самое главное, легко выполнять различного рода математические вычисления онлайн.
Инженерному калькулятору под силу выполнить как простые арифметические действия, так и довольно сложные математические расчеты.
Web20calc — инженерный калькулятор, который имеет огромное количество функций, к примеру, как вычисление всех элементарных функций. Также калькулятор поддерживает тригонометрические функции, матрицы, логарифмы и даже построение графиков.
Несомненно, Web20calc будет интересен той группе людей, которая в поиске простых решений набирает в поисковых системах запрос: математический онлайн калькулятор. Бесплатное веб-приложение поможет сиюминутно посчитать результат какого-нибудь математического выражения, к примеру, вычесть, сложить, поделить, извлечь корень, возвести в степень и т.д.
В выражении можно воспользоваться операциями возведения в степень, сложения, вычитания, умножения, деления, процентом, константой ПИ. Для сложных вычислений следует указывать скобки.
Возможности инжинерного калькулятора:
1. основные арифметические действия;
2. работа с цифрами в стандартном виде;
3. вычисление тригонометрических корней, функций, логарифмов, возведение в степень;
4. статистические расчеты: сложение, среднее арифметическое или среднеквадратическое отклонение;
5. применение ячейки памяти и пользовательских функций 2-х переменных;
6. работа с углами в радианной и градусной мерах.
Инженерный калькулятор допускает использование разнообразных математических функций:
• извлечение корней (корень квадратный, кубический, а также корень n-ой степени);
• ex (e в x степени), экспонента;
• тригонометрические функции: синус — sin, косинус — cos, тангенс — tan;
• обратные тригонометрические функции: арксинус — sin-1, арккосинус — cos-1, арктангенс — tan-1;
• гиперболические функции: синус — sinh, косинус — cosh, тангенс — tanh;
• логарифмы: двоичный логарифм по основанию два — log2x, десятичный логарифм по основанию десять — log, натуральный логарифм – ln.
В этот инженерный калькулятор также включён калькулятор величин с возможностью конвертирования физических величин для различных систем измерений – компьютерные единицы, расстояние, вес, время и т.д. С помощью данной функции можно моментально произвести перевод миль в километры, фунтов в килограммы, секунд в часы и т.д.
Чтобы произвести математические расчеты, для начала введите последовательность математические выражения в соответствующее поле, затем нажмите на знак равенства и лицезрейте результат. Можно вводить значения прямо с клавиатуры (для этого область калькулятора должна быть активна, следовательно, нелишним будет поставить курсор в поле ввода). Помимо прочего, данные можно вносить при помощи кнопок самого калькулятора.
Для построения графиков в поле ввода следует записать функцию так, как указанно в поле с примерами или воспользуйтесь специально предназначенной для этого панелью инструментов (чтобы в нее перейти нажмите на кнопку с иконкой в виде графика). Для конвертации величин нажмите Unit, для проведения работ с матрицами – Matrix.
Понятие комплексного числа
Прежде чем, мы перейдем к рассмотрению комплексных чисел, дам важный совет: не пытайтесь представить комплексное число «в жизни» – это всё равно, что пытаться представить четвертое измерение в нашем трехмерном пространстве.
Если хотите, комплексное число – это двумерное число. Оно имеет вид , где и – действительные числа, – так называемая мнимая единица. Число называется действительной частью () комплексного числа , число называется мнимой частью () комплексного числа .
– это ЕДИНОЕ ЧИСЛО, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами: или переставить мнимую единицу: – от этого комплексное число не изменится. Но стандартно комплексное число принято записывать именно в таком порядке:
Чтобы всё было понятнее, сразу приведу геометрическую интерпретацию. Комплексные числа изображаются на комплексной плоскости:
Как упоминалось выше, буквой принято обозначать множество действительных чисел. Множество же комплексных чисел принято обозначать «жирной» или утолщенной буквой . Поэтому на чертеже следует поставить букву , обозначая тот факт, что у нас комплексная плоскость.
Комплексная плоскость состоит из двух осей: – действительная ось – мнимая ось
Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат (см. Графики и свойства элементарных функций). По осям нужно задать масштаб, отмечаем:
ноль;
единицу по действительной оси;
мнимую единицу по мнимой оси.
Не нужно проставлять все значения: …–3, –2, –1, 0, 1, 2, 3,… и .
Да чего тут мелочиться, рассмотрим чисел десять.
Построим на комплексной плоскости следующие комплексные числа:, , , , , , ,
По какому принципу отмечены числа на комплексной плоскости, думаю, очевидно – комплексные числа отмечают точно так же, как мы отмечали точки еще в 5-6 классе на уроках геометрии.
Рассмотрим следующие комплексные числа: , , . Вы скажете, да это же обыкновенные действительные числа! И будете почти правы. Действительные числа – это частный случай комплексных чисел. Действительная ось обозначает в точности множество действительных чисел , то есть на оси сидят все наши «обычные» числа. Более строго утверждение можно сформулировать так: Множество действительных чисел является подмножеством множества комплексных чисел .
Числа , , – это комплексные числа с нулевой мнимой частью.
Числа , , – это, наоборот, чисто мнимые числа, т.е. числа с нулевой действительной частью. Они располагаются строго на мнимой оси .
В числах , , , и действительная и мнимая части не равны нулю. Такие числа тоже обозначаются точками на комплексной плоскости, при этом, к ним принято проводить радиус-векторы из начала координат (обозначены красным цветом на чертеже). Радиус-векторы к числам, которые располагаются на осях, обычно не чертят, потому что они сливаются с осями.
Сопряженные числа и их свойства
Пусть —
комплексное число. Число ,
отличающееся от числа лишь знаком
при мнимой части, называется числом, сопряжённым с .
Свойства сопряжённых чисел
1) (число,
сопряжённое сопряжённому числу, равно данному числу);
2) если и —
комплексные числа, то и
(число, сопряжённое
с суммой двух чисел, равно сумме чисел, сопряжённых со слагаемыми и число, сопряжённое с
произведением, равно произведению чисел, сопряжённых с сомножителями).
3) если ,
то и
— положительное
действительное число, равное нулю тогда и только тогда, когда ,
т. е. когда и
.
Пример 8. Даны комплексные числа
и
. Убедиться
в справедливости свойств сопряжённых чисел.
Решение. Сопряжёнными данным комплексным числам являются числа
и . Сумма данных комплексных чисел:
,
а произведение:
.
В свою очередь
,
Таким образом, справедливость свойств сопряжённых чисел доказана.
Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера:
cos φ + i sin φ = e iφ . | (6) |
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
z = r e iφ , | (7) |
где r и φ — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству r > 0 .
Запись комплексного числа в форме (7) называют экспоненциальной (показательной) формой записи комплексного числа.
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
cos φ + i sin φ,
или, что то же самое, числа e iφ, при любом значении φ равен 1.