Ipv4 калькулятор подсетей

Инфо

Калькулятор сети производит расчет адреса сети, широковещательного адреса, количество хостов и диапазон допустимых адресов в сети. Для того, чтобы рассчитать эти данные, укажите IP-адрес хоста и маску сети.
Маску сети необходимо указывать в следующем виде: ХХХ.ХХХ.ХХХ.Х. Можно указать эти данные и в «CIDR notation».
Если данные маски сети не указаны, программа обратится к данным, которые обычно используются для сетей этого типа.
Для того, чтобы более наглядно показать, как рассчитываются программой IP-адреса сетей, рассчитанные данные приведены в двоичном формате. Часть адреса перед пробелом отражает сведения о принадлежности к сети. Указанные здесь данные носят название «битов сети». Часть, следующая за пробелом, отвечает за адреса хостов. Они именуются битами хостов. В широковещательном адресе их значение равно единице, в адресе сети оно составляет 0.
Биты, находящиеся в начале, обозначают класс сети. Если сеть находится в Intranet, это необходимо указать отдельно.

Резервация адресов для особых функций

Имеется ряд IPv4 адресов, сохраненных для определенных задач. Они не используются для глобальной маршрутизации. К функциям, которые выполняются с их помощью, относится создание сокетов IP, обеспечение коммуникаций внутри хоста, многоадресная рассылка, регистрация адресов, имеющих специальное назначение, и др. Эти адреса могут быть использованы в частных сетях, в провайдерских сетях. Часть из них сохранена для последующего использования.

Подсеть Назначение
0.0.0.0/8 Адреса источников пакетов «этой» («своей») сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста.
10.0.0.0/8 Для использования в частных сетях.
127.0.0.0/8 Подсеть для коммуникаций внутри хоста.
169.254.0.0/16 Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случает отсутствия сервера DHCP.
172.16.0.0/12 Для использования в частных сетях.
100.64.0.0/10 Для использования в сетях сервис-провайдера.
192.0.0.0/24 Регистрация адресов специального назначения.
192.0.2.0/24 Для примеров в документации.
192.168.0.0/16 Для использования в частных сетях.
198.51.100.0/24 Для примеров в документации.
198.18.0.0/15 Для стендов тестирования производительности.
203.0.113.0/24 Для примеров в документации.
240.0.0.0/4 Зарезервировано для использования в будущем.
255.255.255.255 Ограниченный широковещательный адрес.

Зарезервированные адреса, которые маршрутизируются глобально.

Подсеть Назначение
192.88.99.0/24 Используются для рассылки ближайшему узлу. Адрес 192.88.99.0/32 применяется в качестве ретранслятора при инкапсуляции IPv6 в IPv4 (6to4)
224.0.0.0/4 Используются для многоадресной рассылки.

Как рассчитать сеть при помощи калькулятора

Произвести расчет сети очень просто. Для этих целей нужно лишь указать IP-адрес в специальном поле, выбрать нужный параметр маски сети и кликнуть на кнопку расчета. Количество адресов подсети отличается от числа возможных узлов. Нулевой IP-адрес сохраняется для того, чтобы идентифицировать подсеть; последний резервируется как широковещательный адрес. Ввиду этого узлов в действующих сетях может быть меньше, чем адресов.

Маски и размеры подсетей

А,
В,
С — традиционные классы адресов. М — миллион, К — тысяча.

Подсеть Десятеричная запись # подсетей # адресов Класс
/1 128.0.0.0   2048 M 128 А
/2 192.0.0.0   1024 M 64 А
/3 224.0.0.0   512 M 32 А
/4 240.0.0.0   256 M 16 А
/5 248.0.0.0   128 M 8 А
/6 252.0.0.0   64 M 4 А
/7 254.0.0.0   32 M 2 А
/8 255.0.0.0   16 M 1 А
/9 255.128.0.0   8 M 128 B
/10 255.192.0.0   4 M 64 B
/11 255.224.0.0   2 M 32 B
/12 255.240.0.0   1024 K 16 B
/13 255.248.0.0   512 K 8 B
/14 255.252.0.0   256 K 4 B
/15 255.254.0.0   128 K 2 B
/16 255.255.0.0   64 K 1 B
/17 255.255.128.0 2 32 K 128 C
/18 255.255.192.0 4 16 K 64 C
/19 255.255.224.0 8 8 K 32 C
/20 255.255.240.0 16 4 K 16 C
/21 255.255.248.0 32 2 K 8 C
/22 255.255.252.0 64 1 K 4 C
/23 255.255.254.0 128 512 2 C
/24 255.255.255.0 256 256 1 C
/25 255.255.255.128 2 128 1/2 C
/26 255.255.255.192 4 64 1/4 C
/27 255.255.255.224 8 32 1/8 C
/28 255.255.255.240 16 16 1/16 C
/29 255.255.255.248 32 8 1/32 C
/30 255.255.255.252 64 4 1/64 C
/31 255.255.255.254   2 1/128 C
/32 255.255.255.255 Ограниченный широковещательный адрес

Структура IP-адреса

Обычно IP-адрес записывается следующим образом: 192.168.10.100. Каждая секция представляет собой 8 бит или 1 байт информации. Сервер видит эти цифры как набор единиц и нулей, для нашего удобства они записываются в обычной десятичной системе. Максимальная её длина — 3 знака, а минимальная — 1. Суммарно вся запись занимает 32 бита и теоретически может быть 232 или 4.294.967.296 ресурсов.

Весь цифровой код делится на две части: адрес провайдера и хост. Первый из них определяет провайдера, через который вы работаете, а второй обозначает идентификатор конкретного устройства , как, например, ноутбук или планшет Андроид, в локальном подключении. Для того чтобы узнать, сколько бит обозначает каждый из показателей, записывается префикс сети через слеш. Тогда запись выглядит как 192.168.10.100/24. В нашем случае 24 обозначает, что первых 3 секции (3*8=24), а именно 192.168.10 является адресом соединения. Оставшиеся 8 бит, а именно 100 — это идентификатор оборудования (максимум 28 = 256 адресов). При 192.168.10.100/16 локальный ресурс будет 192.168, а хост — 10.100 (216 = 65536).

Часто для определения адреса используется маска подсети. Её длина не отличается. Это, по сути, то же самое, что и префикс сети, только немножко по-другому организовано

Вы, наверное, обращали внимание, что провайдер указывает этот параметр при подключении к интернету. Она также показывает, какая часть IP относится к провайдеру, а какая — к хосту

Она записывается также в виде четырёх 8-битных секций. Единственное отличие, что в двоичном исчислении сначала должны идти только единицы. Если перевести двоичные 11111111 в десятичное исчисление, получится 255. Поэтому маска обязательно будет начинаться с 255.

Рассмотрим пример. Возьмём наш адрес 192.168.10.100 и маску 255.255.255.0. Соответственно, первых три раздела записи будут идентификатором LAN, а последняя — идентификатором компьютера. Если маска — 255.255.0.0, то сеть будет 192.168, а хост — 10.100.

Также маска лучше поможет определить, относятся ли два IP-ресурса к . Возьмём, к примеру, 213.111.125.17 и 213.11.176.3. Если маска — 255.255.0.0, то оба адреса расположены в одной сети, если она 255.255.255.0, то в разной, так как 125 и 176 отличаются.

Префикс, в переводе с французского языка, означает «прикрепленный член впереди». Этот термин применяется и в языкознании, и в информатике, и в сетевых технологиях. В языкознании префикс это морфема, которая стоит перед корнем и изменяет его грамматическое или лексическое значение. В информатике префикс обозначает начало строки. В этой статье мы более подробно остановимся на том, что такое префикс сети и префикс телефона.

Как найти префикс IPv6?

Адреса IPv4 имеют маску подсети, но вместо ввода типа 255.255.255.0 в IPv6 мы используем длину префикса. Ниже приведен пример префикса IPv6:

Это почти то же самое, что и при использовании длины префикса в IPv4 192.168.1.1/24. Число за — количество бит, которое мы используем для префикса. В приведенном выше примере это означает, что 2001:1111:2222:3333 является префиксом (64 бит), и все, что находится за ним, может использоваться для узлов.

При подсчете подсети для IPv4 мы можем использовать маску подсети для определения сетевого адреса, а для IPv6 мы можем тоже можем сделать что-то подобное. Для любого заданного IPv6-адреса мы можем рассчитать префикс (найти сетевую часть адреса).

Позвольте мне показать вам, о чем я говорю, вот IPv6-адрес, который может быть назначен узлу:

Какая часть этого IPv6-адреса является префиксом и какая часть идентифицирует узел?

Поскольку мы используем /64, это означает, что первые 64 бита являются префиксом (сетевой частью). Каждый шестнадцатеричный символ представляет 4 двоичных бита, это значит, что эта часть является префиксом:

Вышеприведенная часть имеет 16 символов. 16 x 4 = 64 бит. Итак, это префикс. Остальная часть адреса IPv6 идентифицирует узел:

Мы выяснили, что «2001:1234:5678:1234» является префиксом, но записывать его прямо так, не будет корректно. Чтобы правильно записать префикс, нам нужно добавить нули в конце этого префикса, чтобы он снова стал 128-битным адресом:

2001:1234:5678:1234:0000:0000:0000:0000/64 является допустимым префиксом, но мы можем его сократить. Эта строка нулей может быть удалена и заменена на «::«».

Это самый короткий способ записать префикс. Давайте посмотрим на другой пример:

Прежде чем мы поймем, что такое префикс, мы должны записать полный адрес, поскольку этот был сокращен (см. ::). Просто добавьте нули, пока у нас не будет полный 128-разрядный адрес:

У нас есть префикс длиной 64 бит. Один шестнадцатеричный символ представляет собой 4 двоичных бита, поэтому первые 16 символов являются префиксом:

Теперь мы можем добавить нули в конце, чтобы снова сделать его 128-битным адресом и вернуть необходимую длину префикса:

Мы привели всё к красивому внешнему виду, но мы можем сделать его еще немного короче:

4 нуля в строке могут быть заменены на один, поэтому «3211:0:0:1234::/64» является самой короткой записью, с помощью который мы можем представить этот префикс.

В зависимости от длины префикса вычисления могут быть очень легкими или (очень) трудными. Только что, в примерах, я показал, что оба префикса имели длину 64. Что, если бы у меня была префиксная длина /53 или что-то в этом духе?

Каждый шестнадцатеричный символ представляет 4 двоичных бита. Когда длина вашего префикса кратна 16, тогда его легко вычислить, потому что 16 двоичных битов представляют 4 шестнадцатеричных символа.

Таким образом, с длиной префикса 64 мы имеем 4 «блока» с 4-я шестнадцатеричными символами, каждый из которых позволяет легко производить вычисления с префиксом. Когда длина префикса кратна 4, это уже хорошо и удобно, потому что граница будет одним шестнадцатеричным символом.

Если длина префикса не кратна 16 или 4, это означает, что мы должны выполнить некоторые двоичные вычисления. Позвольте мне привести пример!

Это наш IPv6-адрес, и я хотел бы узнать префикс для этого адреса. С чего начать?

Сначала я должен определить, в каком «блоке» находится мой 53-й бит:

Где-то в синем блоке мы найдем 53-й бит. Чтобы узнать, что такое префикс, нам нужно будет преобразовать эти шестнадцатеричные символы в двоичный вид:

Теперь у нас есть блок, содержащий 53-й бит, где проходит граница находится между «prefix» и «host»:

Теперь мы установим биты узла в , чтобы остался только префикс. Наконец, мы преобразовываем из двоичного значения обратно в шестнадцатеричное:

Верните этот блок на место и установите все остальные биты узла в :

Мы нашли наш префикс! 2001:1234:abcd:5000::/53 — ответ. Не так уж сложно все рассчитать, но вам придется потрудиться с бинарными преобразованиями…

Спасибо за уделенное время на прочтение статьи!

Подписывайтесь на обновления нашего блога и оставайтесь в курсе новостей мира инфокоммуникаций!

Чтобы знать больше и выделяться знаниями среди толпы IT-шников, записывайтесь на курсы Cisco от Академии Cisco, курсы Linux от Linux Professional Institute на платформе SEDICOMM University.

Что такое номер сотового телефона

Десятизначный идентификатор, состоящий из кода провайдера и уникального набора чисел – это номер мобильного телефона. В международном формате есть еще индекс страны (для России +7). Def-коды (идентификаторы оператора) состоят из трех цифр; нумерация начинается с девятки. Это негеографические телефонные индексы, благодаря которым можно определить провайдера услуг связи абонента, но монополии на них у фирм уже нет. Можно перейти, например, от МТС к Мегафону с сохранением прежнего набора чисел.

Услуга перехода доступна пока небольшому количеству людей, и узнать, откуда звонит неизвестный, все еще можно. По этой же причине номерные коды мобильных операторов России остаются востребованными данными. Def не считаются секретной информацией и находятся в открытых базах. Ими кодируют не только сведения о провайдере, но и о регионе, в котором зарегистрирован номер (в пределах диапазона областей, а не конкретного города или района).

Коды сотовых операторов

Распределяет коды сотовых операторов России Федеральное агентство связи (Россвязь). Таблица со списком деф идентификаторов выложена на официальном сайте учреждения и регулярно обновляется. Она доступна для скачивания любому пользователю Интернета. Для удобства поиска можно вбить код в специальную форму на сайте и быстро найти информацию о соответствующем провайдере сети и регионе.

Интернет-протокол версии 4

Определение префикса сети

Маска подсети IPv4 состоит из 32 бит; это последовательность единиц ( 1 ), за которой следует блок нулей ( ). Единицы указывают биты в адресе, используемом для префикса сети, а завершающий блок нулей обозначает эту часть как идентификатор хоста.

В следующем примере показано отделение префикса сети и идентификатора хоста от адреса ( 192.0.2.130 ) и связанной с ним маски подсети 24 ( 255.255.255.0 ). Операция отображается в виде таблицы с использованием двоичных форматов адресов.

Двоичная форма Точечно-десятичная запись
айпи адрес 192.0.2.130
Маска подсети 255.255.255.0
Префикс сети 192.0.2.0
Идентификатор хоста 0.0.0.130

Результатом операции побитового И для IP-адреса и маски подсети является префикс сети 192.0.2.0 . Часть хоста, равная 130 , получается побитовой операцией AND адреса и дополнения до единицы маски подсети.

Подсети

Разделение на подсети — это процесс обозначения некоторых старших битов из части хоста как части префикса сети и соответствующей настройки маски подсети. Это делит сеть на более мелкие подсети. Следующая диаграмма изменяет приведенный выше пример, перемещая 2 бита от части хоста к префиксу сети, чтобы сформировать четыре меньшие подсети, каждая четверть предыдущего размера.

Двоичная форма Точечно-десятичная запись
айпи адрес 192.0.2.130
Маска подсети 255.255.255.192
Префикс сети 192.0.2.128
Хост-часть 0.0.0.2

Специальные адреса и подсети

IPv4 использует специально назначенные форматы адресов, чтобы облегчить распознавание специальных функций адреса. Первая и последняя подсети, полученные путем разбиения на подсети более крупной сети, традиционно имели специальное обозначение и, с самого начала, особые последствия использования. Кроме того, IPv4 использует адрес узла « все единицы» , т. Е. Последний адрес в сети, для широковещательной передачи всем узлам в канале связи.

В первой подсети, полученной в результате разделения на подсети более крупной сети, все биты в группе битов подсети установлены в ноль (0). Поэтому он называется нулевой подсетью . В последней подсети, полученной в результате разделения на подсети более крупной сети, все биты в группе битов подсети установлены в единицу (1). Поэтому она называется подсетью « все единицы» .

Первоначально IETF не одобряла использование этих двух подсетей в производственной среде. Если длина префикса недоступна, большая сеть и первая подсеть имеют один и тот же адрес, что может привести к путанице. Подобная путаница возможна при широковещательном адресе в конце последней подсети. Поэтому рекомендуется зарезервировать значения подсети, состоящие из всех нулей и всех единиц в общедоступном Интернете, уменьшив количество доступных подсетей на два для каждой подсети. Эта неэффективность была устранена, и в 1995 году эта практика была объявлена ​​устаревшей и актуальной только при работе с устаревшим оборудованием.

Хотя значения хоста «все нули» и «все единицы» зарезервированы для сетевого адреса подсети и ее широковещательного адреса , соответственно, в системах, использующих CIDR, все подсети доступны в разделенной сети. Например, сеть 24 можно разделить на шестнадцать используемых сетей 28 . Каждый широковещательный адрес, например * .15 , * .31 ,…, * .255 , уменьшает только количество хостов в каждой подсети.

Количество хостов подсети

Количество доступных подсетей и количество возможных хостов в сети можно легко вычислить. Например, сеть 192.168.5.0 24 может быть разделена на следующие четыре подсети 26 . Выделенные два бита адреса становятся частью номера сети в этом процессе.

Сеть Сеть (двоичная) Адрес трансляции
192.168.5.0/26 192.168.5.63
192.168.5.64/26 192.168.5.127
192.168.5.128/26 192.168.5.191
192.168.5.192/26 192.168.5.255

Остальные биты после битов подсети используются для адресации хостов внутри подсети. В приведенном выше примере маска подсети состоит из 26 бит, что составляет 255.255.255.192, оставляя 6 бит для идентификатора хоста. Это позволяет использовать 62 комбинации хостов (2 6 -2).

В общем, количество доступных хостов в подсети составляет 2 ч -2, где h — количество битов, используемых для хостовой части адреса. Количество доступных подсетей равно 2 n , где n — количество битов, используемых для сетевой части адреса.

Есть исключение из этого правила для 31-битных масок подсети, что означает, что идентификатор хоста имеет длину всего один бит для двух допустимых адресов. В таких сетях, обычно в двухточечных каналах , могут быть подключены только два хоста (конечные точки), и указание сетевых и широковещательных адресов не требуется.

Как настроить параметры TCP/IP у компьютера

Для ОС Windows XP:

Шаг 1 В панели задач Windows нажмите кнопку Start (Пуск) и затем Control Panel (Панель управления).

Шаг 2 Сделайте двойной щелчок мышью по иконке Local Area Connection (Подключение по локальной сети). В окне Local Area Connection Properties (Подключение по локальной сети — Свойства) выберите вкладку TCP/IP:

Шаг 3 Нажмите кнопку Properties (Свойства). Откроется окно.

Шаг 4 Существуют два способа настройки параметров TCP/IP:

При помощи DHCP-сервера

Выберите Obtain an IP address automatically (Получить IP-адрес автоматически) и Obtain DNS Server address automatically (Получить адрес DNS-сервера автоматически), как представлено на рисунке ниже. По умолчанию они могут быть уже выбраны. Нажмите кнопку OK , чтобы сохранить сделанные изменения.

Указать IP-адрес вручную

1) Выберите Use the following IP address (Использовать следующий IP-адрес), как представлено на следующем рисунке. Если LAN IP-адрес маршрутизатора 192.168.1.1, укажите IP-адрес в формате 192.168.1.x (где х 2-254), маска подсети 255.255.255.0 и шлюз по умолчанию 192.168.1.1.

2) Выберите Use the following DNS server addresses (Использовать следующие адреса DNS-серверов), как представлено на следующем рисунке. Укажите IP-адрес DNS-сервера, полученный от Интернет-провайдера. Нажмите кнопку OK, чтобы сохранить сделанные изменения.

Для Windows Vista/Windows 7 (Примечание: в качестве примера использован интерфейс ОС Vista; порядок действий для ОС Windows 7 аналогичный):

Шаг 1 Щелкните мышкой по кнопке

клавишу R

Шаг 2 Введите ncpa.cpl и нажмите OK.

Шаг 3 Выберите подключение, сделайте щелчок правой кнопкой мыши и выберите раздел Properties (Свойства).

Шаг 4 Выберите Internet Protocol Version 4(TCP/IPv4) , сделайте двойной щелчок по нему или нажмите кнопку Properties.

Шаг 5 Существуют два способа настройки параметров TCP/IP — автоматическое назначение DHCP-сервером или задать вручную.

1. С помощью DHCP-сервера

Выберите Obtain an IP address automatically (Получить IP-адрес автоматически) и, если нужно, Obtain DNS server address automatically (Получить адрес DNS-cервера автоматически). Нажмите кнопку OK , чтобы сохранить сделанные изменения.

2. Задать вручную

Выберите Use the following IP address (Использовать следующий IP-адрес), укажите IP-адрес, маску подсети и IP-адрес шлюза по умолчанию.

Выберите Use the following DNS server addresses (Использовать следующие адреса DNS-серверов). Укажите IP-адреса DNS-серверов.

Шаг 5 Нажмите кнопку OK, чтобы сохранить и применить сделанные изменения.

Префикс в 1с. Юр. лицо, какой префикс?

В 1С, какой префикс нужно ставить, где пояснения прочитать. В справочнике — нет. в помощнике — нет. В помощнике, проставлено в примере напротив Юр. лица префикс АКА. Что бы это значило — интересно.
Может кто нибудь знает? То, что префикс страхует от повторений, понятно. Его, что от «фонаря» выдумывать?

Павел жуков

Префикс выбираете любой. Его смысл, чтобы вы понимали, какое юр. лицо обозначается этим префиксом. Например, вы работаете с юр. лицом ООО «Ромашка». Можете дать ему префикс «РОМ». И все документы, созданные от имени ООО «Ромашка» будут иметь нумерацию РОМ0001, РОМ0002, РОМ0003 и т. д. Увидев номер такого документа, вы сразу поймете, что он принадлежит ООО «Ромашка», а не кому-то еще.

Обучаясь в школе, дети узнают, что такое префикс. О том, что обозначает это понятие и на какие группы подразделяется, узнаем далее в нашей статье.

IPv4[править]

IPv4 (англ. Internet Protocol version 4) — четвёртая версия интернет протокола (IP). Описан в IETF в статье RFC 791 (сентябрь 1981 года). Это один из самых используемых интернет протоколов. Был введен в использование в ARPANET в 1983 году.

Функция протокола — передавать дейтаграммы по множеству соединенных сетей.

Структура пакетаправить

Рассмотрим формат IPv4-дейтаграмм.

Дейтаграмма состоит из заголовка и основной части (данных). Биты передаются слева направо и сверху вниз (big-endian порядок). В настоящее время ясно, что лучше было бы использовать обратный (little-endian) порядок, но во время создания протокола это не было очевидно. Так на Intel x86 требуется программное преобразование, как при передаче, так и при приеме.

Рассмотрим структуру заголовка:

Структура заголовка IPv4
1 2 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия IHL Дифференциальное обслуживание (Тип службы) Полная длина
Идентификатор Флаги Смещение фрагмента
Время жизни Протокол Контрольная сумма заголовка
IP-адрес источника
IP-адрес назначения
Опции Остаток
  • Версия: 4 бита
  • IHL: 4 бита
  • Дифференциальное обслуживание (Тип службы): 8 битов
  • Полная длина: 16 бит
  • Идентификатор: 16 бит
  • Флаги: 3 бита
    • Бит 0: зарезервированное значение, должны быть равно 0.
    • Бит 1 (DF): Не фрагментировать (англ. Don’t Fragment). 0 — можно фрагментировать, 1 — нельзя. Также может использоваться при определении путевого значения MTU, которое равно максимальному размеру пакета, передаваемого по пути без фрагментации. Пометив этот бит, отправитель гарантирует, что либо дейтаграмма дойдет единым блоком, либо отправитель получит сообщение об ошибке.
    • Бит 2 (MF): Продолжение следует (англ. More Fragments). 0 — в последнем фрагменте, 1 — в предыдущих.
  • Смещение фрагмента: 13 битов
  • Время жизни: 8 битов
  • Протокол: 8 битов
  • Контрольная сумма заголовка: 16 бит
  • IP-адрес источника: 32 бита.
  • IP-адрес получателя: 32 бита.
  • Опции: переменная длина
    • В начале поля всегда располагается однобайтный идентификатор. Иногда за ним может располагаться также однобайтное поле длины, а затем один или несколько информационных байтов. Размер этого поля должен быть кратен 4 байтам. Поле опции имеет следующий формат:
      • 1 бит — флаг копирования. Показывает, если опция скопирована во все фрагменты.
      • 2 бита — класс опции. Могут быть следующие классы: 0 — control, 2 — debugging и измерение, 1 и 3 — зарезервированы на будущее.
      • 5 бит — номер опции.
    • Приведем примеры опций:
      • Безопастность — указывет уровень секретности дейтаграммы. Но на практике все его игнорируют.
      • Строгая маршрутизация от источника — задает полный путь следования дейтаграммы.
      • Свободная маршрутизация от источника — задает список маршрутизаторв, которыенельзя миновать.
      • Запомнить маршрут — требует от всех маршрутизаторов добавлять свой IP-адрес.
      • Временной штамп — требует от всех маршрутизаторв добавлять свой IP-адрес и текущее время.
    • Обычно маршрутизаторы либо игнорируют опции, либо обрабатывают неэффективно, отодвигая в стороны как нечто необычное.
  • Остаток (Padding): переменная длина

Назначьте статический IP-адрес в Windows 10

В большинстве случаев IP-адреса для компьютеров или компьютеров автоматически настраиваются на протокол динамической конфигурации хоста (DHCP) соответствующим маршрутизатором. Это полезно, поскольку устройства подключаются к вашей сети мгновенно. Вы избавляете себя от необходимости вручную настраивать IP-адрес для каждого нового устройства. Однако с этим процессом связан один недостаток: время от времени IP-адрес устройства может меняться.

Установка статического IP-адреса может потребоваться, если вы регулярно обмениваетесь файлами, принтером или настраиваете переадресацию портов.

Мы увидим три способа сделать это:

  1. Через панель управления
  2. Через настройки Windows
  3. Использование PowerShell.

1] Установка статического IP-адреса через панель управления

Щелкните правой кнопкой мыши значок сети (или Wi-Fi), видимый на панели задач Windows 10.

В списке из 2-х вариантов выберите последний – Открыть настройки сети и Интернета.

Перейдите в настройки Wi-Fi и немного прокрутите вниз, чтобы найти раздел Связанные настройки . Найдя его, нажмите на ссылку Изменить параметры адаптера .

Мгновенно откроется отдельное окно, которое направит вас в раздел «Сетевые подключения» панели управления.

Щелкните правой кнопкой мыши сетевое соединение, для которого нужно установить статический IP-адрес, и выберите параметр Свойства ‘.

После этого выберите Протокол Интернета версии 4 (TCP/IPv4) на вкладке Сеть и нажмите кнопку Свойства .

Переключите селектор на « Использовать следующий IP-адрес ».

Теперь введите данные в следующие поля, соответствующие настройкам вашей сети.

  1. IP-адрес (найдите его с помощью команды ipconfig /all )
  2. Маска подсети (в домашней сети это 255.255.255.0)
  3. Шлюз по умолчанию (это IP-адрес вашего маршрутизатора.)

В конце не забудьте проверить параметр Проверить настройки при выходе . Это помогает Windows быстро проверить ваш новый IP-адрес и другую соответствующую информацию, чтобы убедиться, что он работает.

Если все выглядит хорошо, нажмите кнопку «ОК» и закройте окно свойств сетевого адаптера.

2] Назначить статический IP-адрес через настройки

Нажмите значок “Настройки” и выберите вкладку Сеть и Интернет .

Выберите Wi-Fi> Текущее соединение, т. Е. Сеть, к которой вы подключены.

Прокрутите страницу вниз до раздела настроек IP и нажмите кнопку Изменить .

Затем, когда появится окно Настройки IP , нажмите стрелку раскрывающегося списка и выберите параметр Вручную .

Включите тумблер IPv4 .

Теперь установите статический IP-адрес. Также установите длину префикса подсети (маска подсети). Если ваша маска подсети 255.255.255.0, то длина префикса подсети в битах равна 24.

После этого настройте адрес шлюза по умолчанию, предпочитаемый адрес DNS и сохраните изменения.

3] Назначение статического IP-адреса через PowerShell

Откройте Powershell от имени администратора и введите следующую команду, чтобы просмотреть текущую конфигурацию сети:

После этого запишите следующую информацию:

  1. InterfaceIndex
  2. IPv4-адрес
  3. IPv4DefaultGateway
  4. DNSServer.

После этого введите следующую команду, чтобы установить статический IP-адрес, и нажмите Enter.

Теперь измените DefaultGateway на адрес шлюза по умолчанию в вашей сети. Обязательно замените номер InterfaceIndex на номер, соответствующий вашему адаптеру, а IPAddress – на IP-адрес, который вы хотите назначить устройству.

Когда закончите, введите следующую команду, чтобы назначить адрес DNS-сервера и нажмите Enter.

Как установить статический IP-адрес в Windows

В данной статье показаны действия, с помощью которых можно установить статический IP-адрес на устройстве с операционной системой Windows 7, Windows 8.1, Windows 10.

В операционной системе Windows настройка статического IP-адреса компьютера может потребоваться в ряде сценариев, например, если вы планируете совместно использовать файлы или принтер в локальной сети или при настройке переадресации портов.

Если статический IP-адрес не назначен, то службы, предоставляемые компьютером другим устройствам, или конфигурация переадресации портов, в конечном итоге перестанут работать. Это связано с тем, что по умолчанию подключенные устройства используют динамические IP-адреса, назначенные DHCP-сервером (обычно маршрутизатором), которые могут изменяться при перезагрузке компьютера.

Операционная система Windows позволяет установить статический IP-адрес с помощью нескольких способов, и далее в статье вы узнаете, как установить статический IP-адрес (IPv4 версия 4) на устройстве с операционной системой Windows , когда оно предоставляет услугу в сети, или при настройке переадресации портов.

Отличия от IPv6

Доменные адреса IPv6 сильно отличаются от более привычных адресов IPv4. Дело в том, что в IPv4-адресах переменное значение первых битов определяет идентификатор сети, а оставшиеся биты — идентификатор хоста. Что касается IPv6-адресов, то первые 64 бита обозначают идентификатор сети, а оставшиеся 64 бита — сетевой интерфейс.

Обратите внимание! Для понимания лучше рассмотреть отличие на примере. Пользователь использует протокол IPv4 и компьютер в сегменте сети 10.0.10.0 с маской подсети 255.255.255.0

Первые три группы битов определяют сетевой идентификатор, а доступные для хостов адреса находятся в диапазоне от 10.0.10.1 до 10.0.10.254. Адрес 10.0.10.255 зарезервирован для широковещательной передачи.

Если пользователь находится в частной сети, где включать Интернет бессмысленно, доступ во всемирную сеть отсутствует, то необходимо задействовать частные IPv4-адреса. Что касается всех остальных адресов IPv4, то они считаются публичными, и их нужно приобретать или брать в аренду.

Обратите внимание! Для настройки обмена данных устанавливать какие-либо сторонние драйвера и утилиты нет необходимости. Для подключения к сети достаточно кликнуть правой кнопкой мыши на значок доступного подключения

Методы доступа и протоколы передачи данных в локальных сетях и глобальных не так обширны и сложны для понимания. Достаточно внимательно изучить информацию, изложенную немного выше.

Префикс имени в телефоне что это

Слово «префикс» встречается не то чтобы часто, но иногда с ним сталкиваться приходится, особенно когда звонишь по мобильному телефону и тебя просят набрать префикс. Что это такое вообще? Чтобы ответить на этот вопрос, давайте вспомним, из каких частей состоит телефонный номер: код страны, префикс и сам номер. Префиксом является код оператора сотовой связи: например, 8 998 000-00-** (префикс выделен).

Каждый префикс закреплен за тем или иным оператором сотовой связи и уже по этому можно идентифицировать, с номера какого оператора связи вы получили входящий звонок. Но поскольку префиксов сегодня не так уж мало, каждый из них запомнить сложно, поэтому есть даже специальные программы, которые показывают, с номера какого сотового оператора связи вам звонят (в некоторых случаях это действительно необходимо знать).

А теперь — куда более наглядный пример. Открываем приложение «Телефон».

И прекрасно видим эти самые префиксы.

Правда, показываются они только на номерах, не добавленных в телефонную книгу. Чтобы увидеть номер и префикс абонента из телефонной книги, надо открыть его карточку.

Формат заголовка IPv6

Давайте рассмотрим формат заголовка протокола IPv6. Основное изменение это более длинные адреса отправителя и получателя, каждая из которых занимают по 16 байт.

  • Первое поле в заголовке протокола IPv6 также, как и в заголовке протокола IPv4, это номер версии 4 для IPv4 и 6 для IPv6.
  • Затем идет поле класс трафика, оно необходимо для реализации качества обслуживания. Самый простой вариант, разбиение трафика на два класса, обычный и важный. Маршрутизаторы, которые поддерживают обеспечение качества обслуживания, передают важный трафик быстрее используя специальную выделенную очередь, также возможны и другие варианты использования классов трафиков.
  • Следующее поле в заголовке IPv6 это метка потока, это поле используется для того чтобы объединить преимущества сетей коммутации пакетов с сетями с коммутацией каналов. У набора пакетов, которые передаются от одного отправителя к одному получателю, и требует определенного типа обслуживания, устанавливается одна и та же метка. Маршрутизаторы, которые поддерживают работу в таком режиме, обрабатывают пакет на основе метки, что гораздо быстрее.
  • Следующее поле это длина полезной нагрузки, в отличии от протокола IPv4, где в подобном поле указывается общая длина пакета, здесь указывается только размер данных без размера заголовка.
  • Затем идет поле следующий заголовок, которое необходимо, если используются дополнительные заголовки, в этом поле указывается тип первого дополнительного заголовка.
  • В IPv6 поле время жизни пакета переименовали в максимальное число транзитных участков, потому что на практике вместо времени жизни, даже в протоколе IPv4, указывается максимальное количество маршрутизаторов через которое может пройти пакет, перед тем как он будет отброшен.

По сравнению с заголовком протокола IPv4 в протоколе IPv6 нет полей, которые отвечают за фрагментацию, и за контрольную сумму. Расчет контрольной суммы создает большую нагрузку на маршрутизаторы, однако эта операция часто является излишней, так как контрольная сумма рассчитывается на канальном уровне, и на сетевом уровне. Поэтому от расчета контрольных сумм в протоколе IPv6, было решено отказаться.

Также было принято решение отказаться от фрагментации, потому что она так же как и расчет контрольной суммы, создает большую нагрузку на маршрутизаторы. На практике во многих сетях сейчас используется один и тот же размер пакета, соответствующий размеру кадра Ethernet 1500 байт, поэтому фрагментация часто являются ненужной. Если все же где-то по пути пакета встретиться сеть с меньшим максимальным размером пакета, то вместо фрагментации необходимо использовать технологию Path MTU Discovery.

Также как и заголовок протокола IPv4,  заголовок протокола IPv6 состоит из двух частей обязательный и необязательной. В необязательные части может быть несколько дополнительных заголовков.

Дополнительные заголовки IPv6

В IPv6 могут быть дополнительные заголовки следующих типов:

  1. Заголовок параметры маршрутизации —  содержит данные, которые необходимы маршрутизаторам для того, чтобы корректно обрабатывать пакеты.
  2. Заголовок параметры получателя —  содержит данные, которые необходимы для обработки пакета на стороне получателя.
  3. Дополнительный заголовок маршрутизация — содержит список маршрутизаторов, через который пакет должен обязательно пройти.

В протоколе IPv6 фрагментация преимущественно не используется, вместо неё используется технология Path MTU Discovery, но как вариант все-таки маршрутизаторы могут фрагментировать пакеты, для этого используется не обязательная часть заголовка.

Важным добавлением в протокол IPv6 является механизм защиты данных, которых не было в IPv4 это аутентификация и шифрование. Обе технологии не являются частью протокола IPv6, а описаны в отдельных документах. RFC 2402 IP Authentication Header используется для аутентификации, а документ RFC 2406 описывает технологию шифрования IP Encapsulation Security Payload, сейчас активными являются обновленные версии этих документов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector